Galkin Quandles, Pointed Abelian Groups, and Sequence A000712
نویسندگان
چکیده
For each pointed abelian group (A, c), there is an associated Galkin quandle G(A, c) which is an algebraic structure defined on Z3 ×A that can be used to construct knot invariants. It is known that two finite Galkin quandles are isomorphic if and only if their associated pointed abelian groups are isomorphic. In this paper we classify all finite pointed abelian groups. We show that the number of nonisomorphic pointed abelian groups of order qn (q prime) is ∑ 0≤m≤n p(m)p(n −m), where p(m) is the number of partitions of integer m.
منابع مشابه
A Characterization of Central Extensions in the Variety of Quandles
The category of symmetric quandles is a Mal’tsev variety whose subvariety of abelian symmetric quandles is the category of abelian algebras. We give an algebraic description of the quandle extensions that are central for the adjunction between the variety of quandles and its subvariety of abelian symmetric quandles.
متن کاملQuandle coloring and cocycle invariants of composite knots and abelian extensions.
Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle coloring of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation t...
متن کاملFirst non-abelian cohomology of topological groups II
In this paper we introduce a new definition of the first non-abelian cohomology of topological groups. We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-restriction exact sequence. Also, we obtain a seven-term exact cohomology sequence up to dimension 2. We give an interpretation of the first non-a...
متن کاملQuandle-like Structures From Groups
We give a general procedure to construct a certain class of ”quandle-like” structures from an arbitrary group. These structures, which we refer to as pseudoquandles, possess two of the three defining properties of quandles. We classify all pseudoquandles obtained from an arbitrary finitely generated abelian group. We also define the notion of the kernel of an element of a pseudoquandle and prov...
متن کاملHomology and homotopy in semi-abelian categories
The theory of abelian categories proved very useful, providing an ax-iomatic framework for homology and cohomology of modules over a ring (in particular, abelian groups) [5]. A similar framework has been lacking for non-abelian (co)homology, the subject of which includes the categories of groups and Lie algebras etc. The point of my thesis is that semi-abelian categories (in the sense of Janeli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 20 شماره
صفحات -
تاریخ انتشار 2013